Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii
نویسندگان
چکیده
Members of the immunity-related GTPase (IRG) family are interferon-inducible resistance factors against a broad spectrum of intracellular pathogens including Toxoplasma gondii. The molecular mechanisms governing the function and regulation of the IRG resistance system are largely unknown. We find that IRG proteins function in a system of direct, nucleotide-dependent regulatory interactions between family members. After interferon induction but before infection, the three members of the GMS subfamily of IRG proteins, Irgm1, Irgm2 and Irgm3, which possess an atypical nucleotide-binding site, regulate the intracellular positioning of the conventional GKS subfamily members, Irga6 and Irgb6. Following infection, the normal accumulation of Irga6 protein at the parasitophorous vacuole membrane (PVM) is nucleotide dependent and also depends on the presence of all three GMS proteins. We present evidence that an essential role of the GMS proteins in this response is control of the nucleotide-bound state of the GKS proteins, preventing their GTP-dependent activation before infection. Accumulation of IRG proteins at the PVM has previously been shown to be associated with a block in pathogen replication: our results relate for the first time the enzymatic properties of IRG proteins to their role in pathogen resistance.
منابع مشابه
Toxoplasma gondii and the Immunity-Related GTPase (IRG) resistance system in mice: a review.
The Immunity Related GTPases (IRG proteins) constitute a large family of interferon-inducible proteins that mediate early resistance to Toxoplasma gondii infection in mice. At least six members of this family are required for resistance of mice to virulent T. gondii strains. Recent results have shown that the complexity of the resistance arises from complex regulatory interactions between diffe...
متن کاملCoordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole
The immunity-related GTPases (IRGs) constitute an interferon-induced intracellular resistance mechanism in mice against Toxoplasma gondii. IRG proteins accumulate on the parasitophorous vacuole membrane (PVM), leading to its disruption and to death of the parasite. How IRGs target the PVM is unknown. We show that accumulation of IRGs on the PVM begins minutes after parasite invasion and increas...
متن کاملReciprocal virulence and resistance polymorphism in the relationship between Toxoplasma gondii and the house mouse
Virulence in the ubiquitous intracellular protozoon Toxoplasma gondii for its natural intermediate host, the mouse, appears paradoxical from an evolutionary standpoint because death of the mouse before encystment interrupts the parasite life cycle. Virulent T. gondii strains secrete kinases and pseudokinases that inactivate the immunity-related GTPases (IRG proteins) responsible for mouse resis...
متن کاملA Toxoplasma gondii Pseudokinase Inhibits Host IRG Resistance Proteins
The ability of mice to resist infection with the protozoan parasite, Toxoplasma gondii, depends in large part on the function of members of a complex family of atypical large GTPases, the interferon-gamma-inducible immunity-related GTPases (IRG proteins). Nevertheless, some strains of T. gondii are highly virulent for mice because, as recently shown, they secrete a polymorphic protein kinase, R...
متن کاملPhosphorylation of Mouse Immunity-Related GTPase (IRG) Resistance Proteins Is an Evasion Strategy for Virulent Toxoplasma gondii
Virulence of complex pathogens in mammals is generally determined by multiple components of the pathogen interacting with the functional complexity and multiple layering of the mammalian immune system. It is most unusual for the resistance of a mammalian host to be overcome by the defeat of a single defence mechanism. In this study we uncover and analyse just such a case at the molecular level,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO Journal
دوره 27 شماره
صفحات -
تاریخ انتشار 2008